Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766037

RESUMO

Quadrotor unmanned aerial vehicles (UAVs) often encounter intricate environmental and dynamic limitations in real-world applications, underscoring the significance of proficient trajectory planning for ensuring both safety and efficiency during flights. To tackle this challenge, we introduce an innovative approach that harmonizes sophisticated environmental insights with the dynamic state of a UAV within a potential field framework. Our proposition entails a quadrotor trajectory planner grounded in a kinodynamic gene regulation network potential field. The pivotal contribution of this study lies in the amalgamation of environmental perceptions and kinodynamic constraints within a newly devised gene regulation network (GRN) potential field. By enhancing the gene regulation network model, the potential field becomes adaptable to the UAV's dynamic conditions and its surroundings, thereby extending the GRN into a kinodynamic GRN (K-GRN). The trajectory planner excels at charting courses that guide the quadrotor UAV through intricate environments while taking dynamic constraints into account. The amalgamation of environmental insights and kinodynamic constraints within the potential field framework bolsters the adaptability and stability of the generated trajectories. Empirical results substantiate the efficacy of our proposed methodology.


Assuntos
Dispositivos Aéreos não Tripulados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...